Department of Mathematics, K.T.H.M. College, Nashik

Mathematics:Teaching, Learning and Exploring.

You are not logged in.

Announcement

This forum supports LaTeX. You may type Mathematics content in LaTeX.

#1 26-10-2015 11:29:29

Alpha +
Moderator
Registered: 23-07-2015
Posts: 12

Linear Algebra

Q.(NET Dec 2014)
The Determinant of \(n \times n \) permutation matrix is
\[ \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 0  & 0 & 1 & 0  \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0\end{pmatrix} \]
A) \( (-1)^n  \)
B) \(  (-1)^{\frac{n}{2}} \)
C) \(  -1 \)
D) \(  1 \)

Ans .

Offline

#2 26-10-2015 11:35:21

Alpha +
Moderator
Registered: 23-07-2015
Posts: 12

Re: Linear Algebra

Q.(NET Dec 2014)
Which of the following matrices have Jordan canonical form equal to \[ \begin{pmatrix} 0 & 1 & 0  \\ 0  & 0  & 0  \\ 0  & 0  & 0 \end{pmatrix} \]
A) \[ \begin{pmatrix} 0 & 0 & 1  \\ 0  & 0  & 0  \\ 0  & 0  & 0 \end{pmatrix} \]
B) \[ \begin{pmatrix} 0 & 0 & 1  \\ 0  & 0  & 1  \\ 0  & 0  & 0 \end{pmatrix} \]
C) \[ \begin{pmatrix} 0 & 1 & 1  \\ 0  & 0  & 0  \\ 0  & 0  & 0 \end{pmatrix} \]
D) \[ \begin{pmatrix} 0 & 1 & 1  \\ 0  & 0  & 1  \\ 0  & 0  & 0 \end{pmatrix} \]

Offline

#3 26-10-2015 11:53:50

Alpha +
Moderator
Registered: 23-07-2015
Posts: 12

Re: Linear Algebra

Q(NET DEC 2014)
Which of the following are eigenvalues of the matrix
\[ \begin{pmatrix}    0 &   0 & 0 & 1       &    0             & 0   \\
                             0 &   0     &     0&       0 &         1  & 0   \\
                             0&      0 &   0  &    0    &     0     &   0    \\
                             1&  0     & 0    &  0      &  0        &   0    \\
                             0& 0      &   0  &      0  &         0 &   0  \\
                             0& 0      &   1 &      0  &         0 &    0  \end{pmatrix} \]
A) 1
B)\(-1\)
C) i
D)\(-i\)
Ans

Offline

#4 21-09-2016 11:49:47

sumita dahiya
Moderator
Registered: 20-09-2016
Posts: 1

Re: Linear Algebra

Alpha + wrote:

Q.(NET Dec 2014)
The Determinant of \(n \times n \) permutation matrix is
\[ \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 0  & 0 & 1 & 0  \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0\end{pmatrix} \]
A) \( (-1)^n  \)
B) \(  (-1)^{\frac{n}{2}} \)
C) \(  -1 \)
D) \(  1 \)

Ans . \(\textbf{Option C}\)
Option C: The determinant of backward identity matrix is \(  -1 \).

Offline

Board footer

Powered by FluxBB

Free Web Hosting